Abstract—A new approach to support vector machine (SVM) classification is proposed wherein each of two data sets are proximal to one of two distinct planes that are not parallel to each other. Each plane is generated such that it is closest to one of the
IEEETRANSACTIONSONPATTERNANALYSISANDMACHINEINTELLIGENCE,VOL.28,NO.1,JANUARY200669
MultisurfaceProximalSupportVectorMachineClassificationviaGeneralizedEigenvalues
OlviL.MangasarianandEdwardW.Wild
Abstract—Anewapproachtosupportvectormachine(SVM)classificationisproposedwhereineachoftwodatasetsareproximaltooneoftwodistinctplanesthatarenotparalleltoeachother.Eachplaneisgeneratedsuchthatitisclosesttooneofthetwodatasetsandasfaraspossiblefromtheotherdataset.EachofthetwononparallelproximalplanesisobtainedbyasingleMATLABcommandastheeigenvectorcorrespondingtoasmallesteigenvalueofageneralizedeigenvalueproblem.Classificationbyproximitytotwodistinctnonlinearsurfacesgeneratedbyanonlinearkernelalsoleadstotwosimplegeneralizedeigenvalueproblems.The
effectivenessoftheproposedmethodisdemonstratedbytestsonsimpleexamplesaswellasonanumberofpublicdatasets.Theseexamplesshowtheadvantagesoftheproposedapproachinbothcomputationtimeandtestsetcorrectness.IndexTerms—Supportvectormachines,proximalclassification,generalizedeigenvalues.
æ
1
INTRODUCTION
UPPORT
vectormachines(SVMs)[23],[4],[27]constitute
themethodofchoiceforclassificationproblemswhilethegeneralizedeigenvalueproblem[22],[5]isasimpleproblemofclassicallinearalgebrasolvablebyasinglecommandofMATLAB[17]orScilab[24]orbyusingstandardlinearalgebrasoftwaresuchLAPACK[1].Inproximalsupportvectorclassification[7],[25],[6],twoparallelplanesaregeneratedsuchthateachplaneisclosesttooneoftwodatasetstobeclassifiedandthetwoplanesareasfarapartaspossible.Inthepresentwork,wedroptheparallelismconditionontheproximalplanesandrequirethateachplanebeascloseaspossibletooneofthedatasetsandasfaraspossiblefromtheotherdataset.Thisformulationleadstotwogeneralizedeigenvalueproblems:Gz¼ HzandLz¼ Mz,whereG,H,L,andMaresymmetricpositivesemidefinitematrices.Eachofthenonparallelproximalplanesisgeneratedbyaneigenvectorcorrespondingtoasmallesteigenvalueofeachofthegeneralizedeigenvalueproblems.ApplicationofthismethodtotheclassicalXORproblemintwodimensionswherethetwosetsaref½00 ;½11 gandf½10 ;½01 gleadstoanexactclassificationbytwononparallelproximallineseachgoingthroughthetwopointsofeachset.
Relatedworkisthek-planeclusteringof[3],whereclustersaredeterminedbyproximitytovariousnonparallelplanesbasedonthesmallesteigenvectorofamatrixgeneratedbygivendatapoints.Wealsonotethat,in[11],thegeneralizedeigenvalueformulationwasusedforproteinfoldrecognitiontodetermineanoptimaltransformationofapermutationmatrixbasedonsimultaneouslyminimizingwithin-class
.O.L.MangasarianiswiththeComputerSciencesDepartment,UniversityofWisconsin,Madison,WI53706,andtheDepartmentofMathematics,UniversityofCaliforniaatSanDiego,LaJolla,CA92093.E-mail:olvi@cs.wisc.edu.
.E.W.WildiswiththeComputerSciencesDepartment,UniversityofWisconsin,Madison,WI53706.E-mail:wildt@cs.wisc.edu.Manuscriptreceived28Oct.2004;revised21Mar.2005;accepted6Apr.2005;publishedonline11Nov.2005.RecommendedforacceptancebyS.K.Pal.
Forinformationonobtainingreprintsofthisarticle,pleasesende-mailto:tpami@http://doc.xuehai.net,andreferenceIEEECSLogNumberTPAMI-0586-1004.
0162-8828/06/$20.00ß2006IEEE
S
variationandmaximizingbetween-classvariationofvariousproteinfolds.
Thisworkisorganizedasfollows:InSection2,webrieflydescribethegeneralclassificationproblemandourproximalmultiplanelinearkernelformulationasageneralizedeigenvalueproblem.InSection3,weextendourproximalresultstoaproximalmultisurfacenonlinearkernelformula-tion.InSection4,wetestournewapproachandcompareitwithstandardlinearandnonlinearkernelclassifiers.Section5concludesthepaper.
Awordaboutournotation.Allvectorswillbecolumnvectorsunlesstransposedtoarowvectorbyaprimesuperscript0.Thescalar(inner)productoftwovectorsxandyinthen-dimensionalrealspaceRnwillbedenotedbyx0y,the2-normofxwillbedenotedbykxk.ForamatrixA2RmÂn;AiistheithrowofAwhichisarowvectorinRn.AcolumnvectorofonesofarbitrarydimensionwillbedenotedbyeandtheidentitymatrixofarbitraryorderwillbedenotedbyI.ThegradientofadifferentiablefunctionfonRnisdefinedasthecolumnvectoroffirstpartialderivatives:
ðxÞ@fðxÞ0mÂn
andB2RnÂk;arfðxÞ:¼½@f1;...;n.ForA2R
kernelKðA;BÞmapsRmÂnÂRnÂkintoRmÂk.Inparticular,ifxandyarecolumnvectorsinRn,thenKðx0;yÞisarealnumber,Kðx0;A0ÞisarowvectorinRm,andKðA;A0ÞisanmÂmmatrix.Weshallmakenoassumptionsonourkernelsotherthansymmetry,thatis,Kðx0;yÞ0¼Kðy0;xÞand,inparticular,weshallnotassumeormakeuseofMercer’spositivedefinitenesscondition[27],[23].Thebaseofthenaturallogarithmwillbedenotedby".AfrequentlyusedkernelinnonlinearclassificationistheGaussiankernel[27],[15]whoseijthelement,i¼1...;m;j¼1...;k,isgivenby:
20
ðKðA;BÞÞij¼"À kAiÀBÁjk,whereA2RmÂn,B2RnÂk,and isapositiveconstant.
2THEMULTIPLANELINEARKERNELCLASSIFIER
Weconsidertheproblemofclassifyingmpointsinthen-dimensionalrealspaceRn,representedbythem1Ân
PublishedbytheIEEEComputerSociety
Proximal support vecto... 6页 免费 Least squares support ... 8页 免费... Improved M-ary Signal Detection using Support Vector Machine Classifiers J....
Support Vector Machine_数学_自然科学_专业资料。Support Vector Machine 支持向量机 张鑫 2002. 2.1 提纲 1. 2. SVM的有关概念介绍 SVM问题的数学表示和推导...
SupportVectorMachine_理学_高等教育_教育专区。Support Vector Machine 支持向量... Proximal support vecto... 6页 免费 support vector machine 9页 免费 ...
ERROR ANALYSIS OF MULTICATEGORY SUPPORT VECTOR MACHINE CLASSIFIERS_专业资料。Ana.Ther App.1oy1 V12,.21)1313o.6No2(00,5-7 DOI0.00s19601013— 1 ...
Parameter estimation by margin maximization Outline Introduction to Support Vector Machine (SVM) Maximum Margin Classifiers Overlapping class distributions Multiclass...
Keywords Twin support vector machine ? Proximal support vector machine ? Generalized eigenvalue proximal support vector machine 1 Introduction Support Vector ...
Hyperbolic Tangent Support Vector Machine_信息与通信_工程科技_专业资料。Junlora ofDogu iest(nnhaUnvriyEg.E)V.7,No.(00 d.o12521) 750 H...
It utilizes the concept of Generalized Eigenvalues Proximal Support Vector Machine (GEPSVM) and ?nds two non-parallel planes for each class by solving a ...
Key Words: Statistical learning theory, Support vector machine, Support vector classification, Support vector regression 众所周知,统计模式识别、线性或非线性回归...
proximal support vector machine for solving machine learning problems Psychophysics - vision research PyrTools - multi-scale image processing RBF - radial ...
我要评论