学海网 文档下载 文档下载导航
设为首页 | 加入收藏
搜索 请输入内容:  
 导航当前位置: 文档下载 > 所有分类 > Proximal support vector machine classifiers

Proximal support vector machine classifiers

Abstract—A new approach to support vector machine (SVM) classification is proposed wherein each of two data sets are proximal to one of two distinct planes that are not parallel to each other. Each plane is generated such that it is closest to one of the

IEEETRANSACTIONSONPATTERNANALYSISANDMACHINEINTELLIGENCE,VOL.28,NO.1,JANUARY200669

MultisurfaceProximalSupportVectorMachineClassificationviaGeneralizedEigenvalues

OlviL.MangasarianandEdwardW.Wild

Abstract—Anewapproachtosupportvectormachine(SVM)classificationisproposedwhereineachoftwodatasetsareproximaltooneoftwodistinctplanesthatarenotparalleltoeachother.Eachplaneisgeneratedsuchthatitisclosesttooneofthetwodatasetsandasfaraspossiblefromtheotherdataset.EachofthetwononparallelproximalplanesisobtainedbyasingleMATLABcommandastheeigenvectorcorrespondingtoasmallesteigenvalueofageneralizedeigenvalueproblem.Classificationbyproximitytotwodistinctnonlinearsurfacesgeneratedbyanonlinearkernelalsoleadstotwosimplegeneralizedeigenvalueproblems.The

effectivenessoftheproposedmethodisdemonstratedbytestsonsimpleexamplesaswellasonanumberofpublicdatasets.Theseexamplesshowtheadvantagesoftheproposedapproachinbothcomputationtimeandtestsetcorrectness.IndexTerms—Supportvectormachines,proximalclassification,generalizedeigenvalues.

æ

1

INTRODUCTION

UPPORT

vectormachines(SVMs)[23],[4],[27]constitute

themethodofchoiceforclassificationproblemswhilethegeneralizedeigenvalueproblem[22],[5]isasimpleproblemofclassicallinearalgebrasolvablebyasinglecommandofMATLAB[17]orScilab[24]orbyusingstandardlinearalgebrasoftwaresuchLAPACK[1].Inproximalsupportvectorclassification[7],[25],[6],twoparallelplanesaregeneratedsuchthateachplaneisclosesttooneoftwodatasetstobeclassifiedandthetwoplanesareasfarapartaspossible.Inthepresentwork,wedroptheparallelismconditionontheproximalplanesandrequirethateachplanebeascloseaspossibletooneofthedatasetsandasfaraspossiblefromtheotherdataset.Thisformulationleadstotwogeneralizedeigenvalueproblems:Gz¼ HzandLz¼ Mz,whereG,H,L,andMaresymmetricpositivesemidefinitematrices.Eachofthenonparallelproximalplanesisgeneratedbyaneigenvectorcorrespondingtoasmallesteigenvalueofeachofthegeneralizedeigenvalueproblems.ApplicationofthismethodtotheclassicalXORproblemintwodimensionswherethetwosetsaref½00 ;½11 gandf½10 ;½01 gleadstoanexactclassificationbytwononparallelproximallineseachgoingthroughthetwopointsofeachset.

Relatedworkisthek-planeclusteringof[3],whereclustersaredeterminedbyproximitytovariousnonparallelplanesbasedonthesmallesteigenvectorofamatrixgeneratedbygivendatapoints.Wealsonotethat,in[11],thegeneralizedeigenvalueformulationwasusedforproteinfoldrecognitiontodetermineanoptimaltransformationofapermutationmatrixbasedonsimultaneouslyminimizingwithin-class

.O.L.MangasarianiswiththeComputerSciencesDepartment,UniversityofWisconsin,Madison,WI53706,andtheDepartmentofMathematics,UniversityofCaliforniaatSanDiego,LaJolla,CA92093.E-mail:olvi@cs.wisc.edu.

.E.W.WildiswiththeComputerSciencesDepartment,UniversityofWisconsin,Madison,WI53706.E-mail:wildt@cs.wisc.edu.Manuscriptreceived28Oct.2004;revised21Mar.2005;accepted6Apr.2005;publishedonline11Nov.2005.RecommendedforacceptancebyS.K.Pal.

Forinformationonobtainingreprintsofthisarticle,pleasesende-mailto:tpami@http://doc.xuehai.net,andreferenceIEEECSLogNumberTPAMI-0586-1004.

0162-8828/06/$20.00ß2006IEEE

S

variationandmaximizingbetween-classvariationofvariousproteinfolds.

Thisworkisorganizedasfollows:InSection2,webrieflydescribethegeneralclassificationproblemandourproximalmultiplanelinearkernelformulationasageneralizedeigenvalueproblem.InSection3,weextendourproximalresultstoaproximalmultisurfacenonlinearkernelformula-tion.InSection4,wetestournewapproachandcompareitwithstandardlinearandnonlinearkernelclassifiers.Section5concludesthepaper.

Awordaboutournotation.Allvectorswillbecolumnvectorsunlesstransposedtoarowvectorbyaprimesuperscript0.Thescalar(inner)productoftwovectorsxandyinthen-dimensionalrealspaceRnwillbedenotedbyx0y,the2-normofxwillbedenotedbykxk.ForamatrixA2RmÂn;AiistheithrowofAwhichisarowvectorinRn.AcolumnvectorofonesofarbitrarydimensionwillbedenotedbyeandtheidentitymatrixofarbitraryorderwillbedenotedbyI.ThegradientofadifferentiablefunctionfonRnisdefinedasthecolumnvectoroffirstpartialderivatives:

ðxÞ@fðxÞ0mÂn

andB2RnÂk;arfðxÞ:¼½@f1;...;n.ForA2R

kernelKðA;BÞmapsRmÂnÂRnÂkintoRmÂk.Inparticular,ifxandyarecolumnvectorsinRn,thenKðx0;yÞisarealnumber,Kðx0;A0ÞisarowvectorinRm,andKðA;A0ÞisanmÂmmatrix.Weshallmakenoassumptionsonourkernelsotherthansymmetry,thatis,Kðx0;yÞ0¼Kðy0;xÞand,inparticular,weshallnotassumeormakeuseofMercer’spositivedefinitenesscondition[27],[23].Thebaseofthenaturallogarithmwillbedenotedby".AfrequentlyusedkernelinnonlinearclassificationistheGaussiankernel[27],[15]whoseijthelement,i¼1...;m;j¼1...;k,isgivenby:

20

ðKðA;BÞÞij¼"À kAiÀBÁjk,whereA2RmÂn,B2RnÂk,and isapositiveconstant.

2THEMULTIPLANELINEARKERNELCLASSIFIER

Weconsidertheproblemofclassifyingmpointsinthen-dimensionalrealspaceRn,representedbythem1Ân

PublishedbytheIEEEComputerSociety

第1页

TOP相关主题

  • support vector
  • vector machine
  • get support vector
  • life support machine
  • binary classifiers
  • classifiers
  • proximal
  • proximal gradient

我要评论

相关文档

  • ...using Support Vector Machine Classifiers

    Proximal support vecto... 6页 免费 Least squares support ... 8页 免费... Improved M-ary Signal Detection using Support Vector Machine Classifiers J....

  • Support Vector Machine

    Support Vector Machine_数学_自然科学_专业资料。Support Vector Machine 支持向量机 张鑫 2002. 2.1 提纲 1. 2. SVM的有关概念介绍 SVM问题的数学表示和推导...

  • SupportVectorMachine

    SupportVectorMachine_理学_高等教育_教育专区。Support Vector Machine 支持向量... Proximal support vecto... 6页 免费 support vector machine 9页 免费 ...

  • ...SUPPORT VECTOR MACHINE CLASSIFIERS

    ERROR ANALYSIS OF MULTICATEGORY SUPPORT VECTOR MACHINE CLASSIFIERS_专业资料。Ana.Ther App.1oy1 V12,.21)1313o.6No2(00,5-7 DOI0.00s19601013— 1 ...

  • Support Vector Machine (1)

    Parameter estimation by margin maximization Outline Introduction to Support Vector Machine (SVM) Maximum Margin Classifiers Overlapping class distributions Multiclass...

  • Twin support vector machine-theory, algorithm and a...

    Keywords Twin support vector machine ? Proximal support vector machine ? Generalized eigenvalue proximal support vector machine 1 Introduction Support Vector ...

  • 【论文】Hyperbolic Tangent Support Vector Machine

    Hyperbolic Tangent Support Vector Machine_信息与通信_工程科技_专业资料。Junlora ofDogu iest(nnhaUnvriyEg.E)V.7,No.(00 d.o12521) 750 H...

  • Twin Support Vector Machine- A review from 2007_图文

    It utilizes the concept of Generalized Eigenvalues Proximal Support Vector Machine (GEPSVM) and ?nds two non-parallel planes for each class by solving a ...

  • support vector machine

    Key Words: Statistical learning theory, Support vector machine, Support vector classification, Support vector regression 众所周知,统计模式识别、线性或非线性回归...

  • Matlab的第三方工具箱大全

    proximal support vector machine for solving machine learning problems Psychophysics - vision research PyrTools - multi-scale image processing RBF - radial ...

站点地图 | 文档上传 | 侵权投诉 | 手机版
新浪认证  诚信网站  绿色网站  可信网站   非经营性网站备案
本站所有资源均来自互联网,本站只负责收集和整理,均不承担任何法律责任,如有侵权等其它行为请联系我们.
文档下载 Copyright 2013 doc.xuehai.net All Rights Reserved.  email
返回顶部