学海网 文档下载 文档下载导航
设为首页 | 加入收藏
搜索 请输入内容:  
 导航当前位置: 文档下载 > 所有分类 > 《4 多边形的内角和与外角和》教案3

《4 多边形的内角和与外角和》教案3

《4 多边形的内角和与外角和》教案

第1课时

教学目标

1.使学生了解多边形的内角、外角等概念.

2.能通过不同方法探索多边形的内角和与外角和公式,并会应用其进行有关计算.

教学重难点

1.重点:多边形的内角和公式.

2.难点:多边形的内角和定理的推导.

教学过程

一.探究

1.我们知道三角形的内角和为180°.

2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.

3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?

4.画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.从中你得到什么结论?

二.思考几个问题

1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?

2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?

3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?

综上所述,你能得到多边形内角和公式吗?

设多边形的边数为n,则

n边形的内角和等于(n-2)·180°.

想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?

由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)

分法一:

第1页

TOP相关主题

我要评论

相关文档

    站点地图 | 文档上传 | 侵权投诉 | 手机版
    新浪认证  诚信网站  绿色网站  可信网站   非经营性网站备案
    本站所有资源均来自互联网,本站只负责收集和整理,均不承担任何法律责任,如有侵权等其它行为请联系我们.
    文档下载 Copyright 2013 doc.xuehai.net All Rights Reserved.  email
    返回顶部