Proceedings of the 2005 IEEE
Engineering in Medicine and Biology 27th Annual ConferenceShanghai, China, September 1-4, 2005
WearableSensorsforReliableFallDetection
JayChen ,KarricKwong ,DennisChang ,JerryLuk§,RuzenaBajcsy¶
DepartmentofElectricalEngineering
andComputerSciences
UniversityofCalifornia,Berkeley
Berkeley,CA94720
¶ {bajcsy,dhchang}@eecs.berkeley.edu,{jayzchen, karrickk}@berkeley.edu,§jerryluk@cal.berkeley.edu
Abstract—Unintentionalfallsareacommoncauseofsevere
injuryintheelderlypopulation.Byintroducingsmall,non-invasivesensormotesinconjunctionwithawirelessnetwork,http://doc.xuehai.netingasmalldevicewornonthewaistandanetworkof xedmotesinthehomeenvironment,wecandetecttheoccurrenceofafallandthelocationofthevictim.Low-costandlow-powerMEMSaccelerometersareusedtodetectthefallwhileRFsignalstrengthisusedtolocatetheperson.
falldetectiontechnology,localizationcandetectwheretheincidentoccurredandrequesttherelevantservices.
II.FALLDETECTIONANDLOCALIZATION
A.PreviousWorkonFallDetection
Accelerometryhasbeenusedinvariousstudiesandappli-cationstoobjectivelymonitorarangeofhumanmovement,forexampletomeasuremetabolicenergyexpenditure,phys-icalactivitylevels,balanceandposturalsway,gait,andtodetectfalls[4].Withrespecttofalldetection,therehasbeenrelativelylittleworkpublished.Accordingto[4],thebasicapproachofusingaccelerometrytodetectthefallwas rstpublishedby[5],[6].Inthisapproach,achangeinbodyorientationfromuprighttolyingthatoccursimmediatelyafteralargenegativeaccelerationindicatesafall.Thesetwoconditionshavebeenincorporatedintofalldetectionalgorithmsusingaccelerometers[7],[8].
Reference[9]presentsafalldetectorwornonthewristthatincorporatesamulti-stagefalldetectionalgorithm.The rstconditionisthedetectionofahighvelocitytowardstheground.Nextanimpactneedstobedetectedwithin3seconds.Afterimpact,theactivityisobservedfor60seconds,andifatleast40secondsofinactivityarerecorded,analarmisactivated.Theresultswerepositiveinthesensethatnofalsealarmsweregiven,butalsodisappointingsincealargepercentageofbackwardsandsidewaysfallswerenotdetected.
Reference[6]documentsthedesignofthecommerciallyavailableTunstallfalldetectorthatusesapatentedtwo-stagedetectionalgorithm.Thedetectorwakesupfromthesleepstatewhenastrongimpactisdetected.Thenasecondsensorestimatesthewearer’sorientationandifhe/sheisinalyingstateforasettimeperiod,analarmisraised.Variouslocationsforthedevicewereconsideredanditwasdeterminedthatthewaistwastheoptimumlocationthatsuitedthewearerandallowedreliablemeasurementofimpacts.
III.SYSTEMDESIGN
OurapplicationutilizesTinyOSandMica2Dotmotesde-velopedatUCBerkeleyasaresearchplatformforlow-powerwirelesssensornetworks[10],[11].TheMica2DotmoteisequippedwiththeAtmelATmega128Lmicrocontroller,4KBofRAManda433MHzradiocapableofdatatransfer
I.INTRODUCTION
A.Background
Fallingcanbeafrequentanddangerouseventfortheelderlypopulation.Itisestimatedthatoverathirdofadultsages65yearsandolderfalleachyear[1],makingittheleadingcauseofnonfatalinjuryforthatagegroup.
Amongolderpersons,55percentoffallinjuriesoccurinsidethehome.Anadditional23percentoccuroutside,butnearthehome[2].Traditionally,placingseniorsinnursinghomesorothercarecentershasmitigatedthedangersoftheelderlyfalling.However,withtheadventofwirelessad-hocnetworksandlow-powermotetechnology,wecannowapproachtheproblemfromadifferentperspective.B.Motivation
ThegoaloftheIvyProject[3]istoprovideaninfrastruc-tureofnetworkedsensorsthatsupportsmultipleapplicationssimultaneously.Thesensornetwork,likeivy,wouldspreadthroughouttheenvironment,whetheritisanof cespaceorhome,linkingleaves(motes)totheroot(basestation).Ingeneral,themotescanbedividedintotwotypes:1)Fixed/infrastructuremotes,forexampleattachedalongsidethewallsandcorridors,and2)mobilemotes,whosegeo-graphicalpositioncanchangeovertime.
Inourapplication,thisnetworkedinfrastructureisusedtodetectwhenapersonhassustainedafallandrelaythisinformationacrosssomemediumsuchthatimmediateandappropriateactioncanbetaken.ThisiscurrentlythefocusoftheIvyProjectandmotivatestheexperimentsdiscussedinthispaper.
Inaddition,http://doc.xuehai.netbinedwiththe
detecting system based on wearable sensor and real-time fall detection ...nature of body movement, which requires accurate and reliable measuring ...
This paper presents the implementation and clinical trial results of a wearable pre-impact fall detection prototype, using inertial sensors to detect faint ...
2)Classification of fall detection methods. 3)Frameworks for these fall detection systems. ? Framework for existing wearable sensor and ambience based ...
Wearable sensors for reliable fall detection[ A] . Proceeding s of 27th IEEE Annual Conference on Engineering in Medicine and Biology [ C] . Shanghai, ...
MITes: (A) receiver, (B) wearable accelerometer (3 axis, 10g), and (... fall detection in elderly, gait defects, security systems, position tracking...
In addition, most available wearable sensors do ...“An ambulatory fall monitor for the elderly”, ...reliable information from the measurements (making ...
Then according to what sensors and how sensors are used we first divide the methods of fall detection into three approaches: wearable device, ambience ...
~Smart Vest Wearable multi-parameter remote ...Smart sensors for continuous detection of vital ... provide consistent and reliable recording of data...
Human Fall Detection U... 51页 4下载券 Human...Reliable recognition rate of experimental results ... solution to detect falls is wearable sensors. ...
Wearable Sensors for Rel... 暂无评价 4页 免费 Detection and classifica... 暂无评价 6页 免费 Genetically Encoded Fluo... 12页 2财富值 Sensors for ...
Enabling Implicit Interaction in Wearable Applications Don’t use sensors ...Hendrik Witt University of Bremen Center for Computing Technologies Am Fall...
我要评论