学海网 文档下载 文档下载导航
设为首页 | 加入收藏
搜索 请输入内容:  
 导航当前位置: 文档下载 > 所有分类 > Abstract Geometry Images

Abstract Geometry Images

Surface geometry is often modeled with irregular triangle meshes. The process of remeshing refers to approximating such geometry using a mesh with (semi)-regular connectivity, which has advantages for many graphics applications. However, current techniques

GeometryImages

XianfengGuHarvardUniversity

StevenJ.GortlerHarvardUniversity

HuguesHoppeMicrosoftResearch

Abstract

Surfacegeometryisoftenmodeledwithirregulartrianglemeshes.Theprocessofremeshingreferstoapproximatingsuchgeometryusingameshwith(semi)-regularconnectivity,whichhasadvan-tagesformanygraphicsapplications.However,currenttechniquesforremeshingarbitrarysurfacescreateonlysemi-regularmeshes.Theoriginalmeshistypicallydecomposedintoasetofdisk-likecharts,ontowhichthegeometryisparametrizedandsampled.Inthispaper,weproposetoremeshanarbitrarysurfaceontoacom-pletelyregularstructurewecallageometryimage.Itcapturesge-ometryasasimple2Darrayofquantizedpoints.Surfacesignalslikenormalsandcolorsarestoredinsimilar2Darraysusingthesameimplicitsurfaceparametrization—texturecoordinatesareab-sent.Tocreateageometryimage,wecutanarbitrarymeshalonganetworkofedgepaths,andparametrizetheresultingsinglechartontoasquare.Geometryimagescanbeencodedusingtraditionalimagecompressionalgorithms,suchaswavelet-basedcoders.Keywords:remeshing,surfaceparametrization.

1INTRODUCTION

Surfacegeometryisoftenmodeledwithirregulartrianglemeshes.Theprocessofremeshingreferstoapproximatingsuchgeometryusingameshwith(semi)-regularconnectivity(e.g.[3,13]).Resamplinggeometryontoaregularstructureoffersanumberofbene http://doc.xuehai.netpressionisimprovedsincetheconnectivityofthesamplesisimplicit.Moreover,remeshingcanreducethenon-uniformityofthegeometricsamplesinthetangentialsurfacedirections,thusreducingoverallentropy[10].Theregularityofsampleneighborhoodshelpsinapplyingsignal-processingoperationsandincreatinghierarchicalrepresentationsformultiresolutionviewingandediting[14,24].

However,currenttechniquesforremeshingarbitrarysurfacescreateonlysemi-regularmeshes.Theoriginalmeshistypicallydecomposedintoasetofdisk-likecharts,ontowhichthegeometryisparametrizedandsampled.Althoughthesamplingoneachchartfollowsregularsubdivision,thechartdomainsformanirregularnetworkoverthesurface.Thisirregulardomainnetworkcomplicatesprocessing,particularlyforoperationsthatrequireaccessingdataacrossneighboringcharts.Incontrast,texturedataistypicallyrepresentedinacompletelyregularfashion,asa(possiblycompressed)2Darrayof[r,g,b]values.Thisdistinction,amongothers,causesgeometryandtexturestobetreatedandrepresentedquitedifferentlybycurrentgraphics

Abstract Geometry Images

hardware.

Inthispaper,weproposetoremeshanarbitrarysurfaceontoacompletelyregularstructurewecallageometryimage.Itcap-turesgeometryasasimplen×narrayof[x,y,z]values.Othersurfaceattributes,suchasnormalsandcolors,arestoredasaddi-tionalsquareimages,sharingthesamedo-mainasthegeometry.Becausethegeome-tryandattributessharethesameparametriza-Stanfordbunnytion,theparametrizationitselfisimplicit—“texturecoordinates”

areabsent.Moreover,thisparametrizationfullyutilizesthetexturedomain(withnowastedspace).Geometryimagescanbeencodedusingtraditionalimagecompressionalgorithm,suchaswavelet-basedcoders.Also,geometryimagesareideallysuitedforhard-warerendering.Theymaybetransmittedtothegraphicspipelineinacompressedformjustliketextureimages.And,theyeliminateexpensivepointer-basedstructuressuchasindexedvertexlists.Ofcourse,arbitrarysurfacescannotgenerallybemappeddirectlyontoasquareimagedomain,becausetheirtopologycandifferfromthatofadisk.Thebasicideainourapproachistosliceopenthemeshalonganappropriatesetofcutpaths,toallowtheunfoldingofthemeshontoadisk-likesurface.Theverticesandedgesalongthecutpathsarerepresentedredundantly(typicallytwice)alongtheboundaryofthisdisk.Next,weparametrizethiscutsurfaceontothesquaredomainoftheimage,andsamplethegeometryatthe2Dgridsamples.

Representingsurfacesasgeometryimagespresentschallenges: Adisk,cutandmustthatbealsofoundpermitsthataopensgoodparametrizationthemeshintoaoftopologicalthesurfacewithinthisdisk.Wedescribeaneffective,automaticmethodforcuttingarbitrary2-manifoldmeshes(possiblywithboundaries). Thereconstructedimageboundarysurfacematchesmustbeexactlyparametrizedalongthesuchcut,thattoavoidthecracks.Traditionaltexturemappingismoreforgivinginthisrespect,inthatcolordiscontinuitiesatboundariesarelessnoticeable.

Thetheparametrizationsurface,sinceundersamplingmustevenlydistributewouldimageleadtosamplesgeometricoverblurring.Wedonotmakeatechnicalcontributioninthisarea,butsimplyapplythegeometric-stretchparametrizationof[18,17].

Straightforwardintroducetearsalonglossythecompressionsurfacecut.ofWetheallowgeometryfusingimageofthemaycutbyencodingthecuttopologyasasmalldatasideband.Geometryimageshavethefollowinglimitations: Theycannotrepresentnon-manifoldgeometry.

Unwrappingparametrizationsanwithentiregreatermeshdistortionasasingleandlesschartuniformcancreatesam-plingthancanbeachievedwithmultiplelocalcharts,particu-larlyforsurfacesofhighgenus.Inthispaper,wedescribeanautomaticsystemforconvertingarbitrarymeshesintogeometryimagesandassociatedattributemaps(Figure1).Wedemonstratethattheyformapracticalandelegantrepresentationforavarietyofgraphicalmodels(Figure7).

第1页

TOP相关主题

  • abstract
  • abstract class
  • java abstract
  • c abstract
  • abstract是什么意思
  • java abstract class
  • php abstract
  • graphical abstract

我要评论

相关文档

站点地图 | 文档上传 | 侵权投诉 | 手机版
新浪认证  诚信网站  绿色网站  可信网站   非经营性网站备案
本站所有资源均来自互联网,本站只负责收集和整理,均不承担任何法律责任,如有侵权等其它行为请联系我们.
文档下载 Copyright 2013 doc.xuehai.net All Rights Reserved.  email
返回顶部