学海网 文档下载 文档下载导航
设为首页 | 加入收藏
搜索 请输入内容:  
 导航当前位置: 文档下载 > 所有分类 > 初中教育 > 数学 > 辅导资料:全等三角形问题中常见的辅助线的作法

辅导资料:全等三角形问题中常见的辅助线的作法

全等三角形中常见的辅助线的作法总结

全等三角形问题中常见的辅助线的作法

常见辅助线的作法有以下几种:

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模

式是全等变换中的“对折”.

2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角

形,利用的思维模式是全等变换中的“旋转”.

3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维

模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.

4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等

变换中的“平移”或“翻转折叠”

5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,

或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等

例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.

例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

- 1 -

BD

C

A

E

F

B

D

C

第1页

TOP相关主题

我要评论

相关文档

站点地图 | 文档上传 | 侵权投诉 | 手机版
新浪认证  诚信网站  绿色网站  可信网站   非经营性网站备案
本站所有资源均来自互联网,本站只负责收集和整理,均不承担任何法律责任,如有侵权等其它行为请联系我们.
文档下载 Copyright 2013 doc.xuehai.net All Rights Reserved.  email
返回顶部